### Chemical Approach to Studying the Role of Quinoline-Based Antimalarials in Inhibiting Hemozoin Formation

Dennis Awasabisah, Ph.D.

Biology/Chemistry Dept.

*Fitchburg State University* **Development Day - May 18, 2021** 



- Malaria is still a public health problem
- Treatment medications for malaria are limited
- Drug resistance a major challenge



Fig. 1 Map of malaria case incidence rate (cases per 1000 population at risk) by country in 2018

REF. World Health Organization. 2018. World Malaria Report 2018; Geneva, 2018.

### The Life Cycle of the *Plasmodium* Parasite





### **Current Literature**

- The plasmodium parasite feeds on the protein portion of heme
- Mechanism of hemozoin formation debated
- Antimalarials inhibit hemozoin formation





## **Current Literature**

- Quinoline-based drugs inhibit hemozoin formation by interacting with heme or hemozoin
- Few solid state structures of heme-drug adducts have been reported, although several adducts have been characterized by spectroscopy



NHR N N Fe

CQ-complex (N-bound) Roepe (J. Phys. Chem. A. **2003)** 





Hf-complex (O-bound) Egan (J. Inorg. Bichem. **2008**)

CQ/AQ— $\mu$ -oxo-dimer complex ( $\pi$ — $\pi$  stabilized) Roepe (Biochem. **2002**; Inorg. Chem. **2004**) QN/QD-complex (O-bound) Villiers (ACS Chem. Biol. **2012)** Roepe (J. Inorg. Biochem. **2011**)

### Fig. 3 Some heme-drug adducts



# **Our Work**

- Study the spectroscopic properties of heme-antimalarial adducts
- Understand features of the solid-state structures of the adducts
- Learn more about the redox behavior of the adducts
  - Use stable synthetic models such as (OEP)Ru(CO)



*QN* = quinine; *QnI* = quinoline, 8-HOQ = 8-hydroxyquinoline; 2-HOQ = 2-hydroxyquinoline; OEP - octaethylporphyrinato

# **Infrared Spectroscopy**

 Infrared (ATR) spectral data suggest adduct formation

Table 1 IR spectral data of the (OEP)Ru(CO)(Q) complexes

| Entry | Compound                      | ს <sub>co</sub> (cm⁻¹) | Δυ <sub>co</sub> (cm⁻¹) |
|-------|-------------------------------|------------------------|-------------------------|
| 1     | (OEP)Ru(CO)(H <sub>2</sub> O) | 1918                   | -                       |
| 2     | (OEP)Ru(CO)(Qnl)              | 1938                   | 20                      |
| 3     | (OEP)Ru(CO)(QN)               | 1931                   | 13                      |
| 4     | (OEP)Ru(CO)(8-HOQ)            | 1916                   | -2                      |
| 5     | (TPP)Ru(CO)(H <sub>2</sub> O) | 1938                   | -                       |
| 6     | (TPP)Ru(CO)(Qnl)              | 1965                   | 27                      |
| 7     | (TPP)Ru(CO)(QN)               | 1963                   | 25                      |



Qnl

8-HOQ

OH

\*Obtained by subtracting the  $v_{co}$  value of the precursor (OEP)Ru(CO)(H<sub>2</sub>O) complex from that of the (OEP)Ru(CO)(Q) complex

 $2-HOQ \qquad OEP - of$ 

Qnl = quinoline; QN = quinine; 8-HOQ = 8-hydroxyquinoline OEP – octaethylporphyrinato TPP – tetraphenylporphyrinato

Fig. 4 IR spectra of the compounds





- X-ray crystal structure of the (OEP)Ru(CO)(Qnl) confirms binding of Qnl to Ru through the quinolinyl N
- Possible that mode of binding is similarly quinolinyl N in the (OEP)Ru(CO)(QN) adduct



(OEP)Ru(CO)(Qnl) Selected bond lengths (Å) and angles (°): Ru–C = 1.8081(15), Ru– N(Qnl) = 2.3408(13), C–O = 1.155(2), ∠RuCO = 176.51(14),

Fig. 5 Molecular structure of (OEP)Ru(CO)(Qnl)

### **Cyclic Voltammetry**

All 4 compounds have two oxidations



**Fig. 6.** CV of (OEP)Ru(CO)(Qnl) & (OEP)Ru(CO)(8-HOQ) in  $CH_2Cl_2$  at 200 mV/s, 1 mM analyte, 0.1 M NBu<sub>4</sub>PF<sub>6</sub> @ RT

| Table 2 CV data of the | Compound                      | Redox Potentials, V (vs. Fc/Fc <sup>+</sup> ) |                  |
|------------------------|-------------------------------|-----------------------------------------------|------------------|
| compounds              |                               | <b>E</b> 1 <sup>o</sup>                       | E <sub>2</sub> ° |
|                        | (OEP)Ru(CO)(H <sub>2</sub> O) | 0.23                                          | 0.72             |
|                        | (OEP)Ru(CO)(Qnl)              | 0.22                                          | 0.79             |
|                        | (OEP)Ru(CO)(QN)               | 0.20                                          | 0.69             |
|                        | (OEP)Ru(CO)(8-HOQ)            | 0.36                                          | 0.82             |

## **IR Spectroelectrochemistry**

IR spec. echem. suggests porphyrin-centered oxidations



**Fig. 7** Difference IR of (OEP)Ru(CO)(Qnl) after 1<sup>st</sup> & 2<sup>nd</sup> oxidation

i Design:

Shaw, M. J.; Henson, R.; Houk, S. E.; Westhoff, J. W.; Jones, 10 M. W.; Richter-Addo, G. B. *Electroanal. Chem.* **2002**, *534*, 47.



## Conclusion

- Ru adducts of quinoline-based molecules have been prepared as structural models for the interactions of selected antimalarial drugs with heme
- The X-ray crystal structure of (OEP)Ru(CO)(Qnl) displays N-binding of the quinoline to the metal center
- The quinoline-based antimalarials bind directly to the Ru center of the heme model
- Work is currently underway to obtain X-ray quality crystals of (OEP)Ru(CO)(QN) and (OEP)Ru(CO)(8-HOQ) adducts to assist in characterizing their solid state structures.

### Acknowledgement



Jack Gangemi (BS Chemistry)\*





Veronica L. Torres (BS Biology, 2019)

Kyle Robbins (BS Chemistry, 2020)\*

- Special Projects Fund (2019-2020)
- Biology & Chemistry Department and Fitchburg State University
- Dr. Douglas R. Powell (Univ. Oklahoma) X-ray crystallography
- National Science Foundation (grant CHE-1726630) and the Univ. of Oklahoma for funds to purchase the X-ray instrument and computers for the X-ray crystallography.

### **Thank You!**