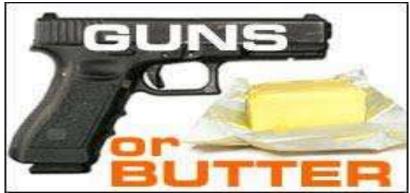
Guns vs. Butter in the Major Schools of Economic Thought

Adem Elveren Economics, History and Political Science


Development Day

FITCHBURG STATE UNIVERSITY

May 18, 2021

Motivation

• Before Paul Samuelson popularized **the guns and butter** analogy in 1947, it was used by J.P. Wernette before the 1940s

• Butter in Guns ?

• or Oil in Guns ? Guns for Oil ?

• Or

Neoclassical, Keynesian, and Marxist Schools

Neoclassical Economics

State is a rational agent, maximizing benefit

+ Appealing for researchers

- Unrealistic assumptions

Military Keynesianism

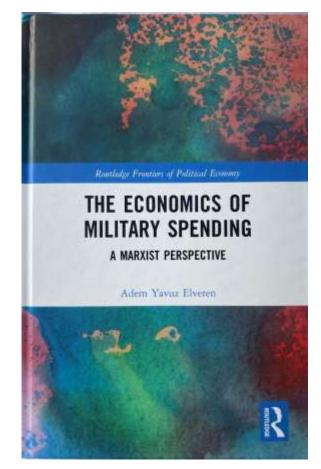
Milex increases aggregate demand

- + Straightforward explanation
- Treats milex just like another gov. exp.

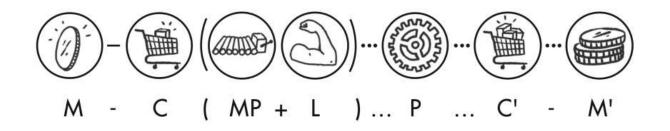
Military Industrial Complex

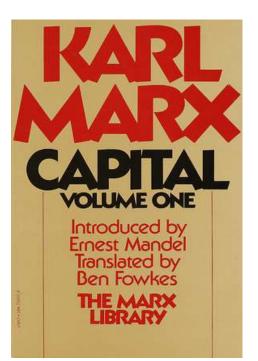
- + Pays attention to interest groups
- Ignores the vital role of milex in capitalism

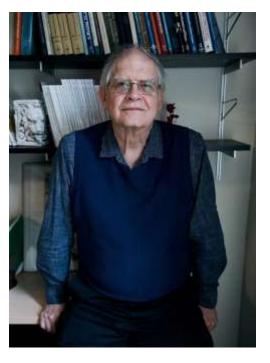
Marxist Economics


Milex has two vital roles:

- 1) creates hegemony
- 2) absorbs surplus


Neoclassical, Keynesian, and Marxist Schools


• Over 200 empirical works on the milex-growth nexus


- How about the rate of profit?
- Whole period vs neoliberal era
- US vs Turkey

Theoretical Model

 $\left| (1-k)C_t + \left(1 - \frac{dT^W}{dt}\right)(1-\tau)kC_{t-T^W} \right| \right|$ $\frac{dT^{R}}{dt} = 1 - \left| \begin{array}{c} +\left(1 - \frac{dT^{S}}{dt}\right)(1 - \tau)(1 - p)S_{t - T^{S}}^{"} \\ +\left(1 - \frac{dT^{V}}{dt}\right)\varphi - T_{t - T^{V}} \end{array} \right| P_{t - T^{R}}$ $+\left(1-\frac{dT^{Z}}{dt}\right)\left(1-\varphi\right) +_{t-T^{Z}}$

(27)

Empirical Analysis (Elveren 2020)

Long Run Coefficients	full sample ARDL (1, 0, 3, 1, 2)	milex > milexmean ARDL (4,1, 0, 2, 1)	milex <milexmean ARDL (3, 0, 0, 2, 3)</milexmean
Spending delay	-0.002***	0.001	-0.002***
	(0.001)	(0.001)	(0.001)
Milex	0.005***	0.003**	0.009
	(0.001)	(0.001)	(0.006)
GDP	7.730***	0.388**	0.105
	(2.38)	(0.172)	(0.680)
Unemployment	0.001	0.003	0.001
	(0.001)	(0.002)	(0.008)
R-squared	0.901	0.926	0.919
SER	0.003	0.002	0.003
Serial correlation	1.062	1.568	1.105
	[0.367]	[0.194]	[0.353]
Normality	1.161	0.396	0.006
	[0.559]	[0.820]	[0.996]
Heteroscedasticity	1.150	1.106	1.613
	[0.325]	[0.369]	[0.105]
Bounds Test	8.721***	6.874***	8.876***
F-Statistic			

Table 8. Results of ARDL Bounds Test (Profit3).

Note: Standard errors in parentheses, probabilities in brackets. ***, **, and * refer to p < 0.01, p < 0.05, p < 0.1 respectively.

Conclusion

- What matters?
- The effect of growth?
- Short run vs long run?
- Growth for whom?
- The effect on profit rate?

• The effect on economic development?