Molecular Probes Used to Elucidate the Thermodynamics of Nanoparticle Diffusion

Steven Fiedler

Department of Biology and Chemistry

May 21, 2019

Nanoparticle Permeation

Understanding interactions of carbonaceous material with a lipid bilayer using MD simulation

Airborne Particulate Matter

Typical diesel engine exhaust

Kittelson, J. Aerol Sci. 29, 575 (1998)

Membrane

Permeation Thermodynamics

- ΔG driven by entropy
- Head group region
 - High density
 - Enthapic favorable
- Tail group region
 - free volume
 - Entropically favored

Required Simulations

Permeability function of: $\Delta G(z)$, D(z)

Potential of Mean Force

Potential of Mean Force

Advancements

Familiarity with the Linux environment

- Text editing (vi) Molecular visualization (VMD) Molecular modeling (GROMACS)
 - Ensembles

Elimination of bad-contacts (shell scripting)

- Simulation techniques
 - Equations of motion
 - Periodic boundaries
- Data Analysis (Xmgrace, OriginPro)
 - Integration and differentiation
 - Fitting
- Literature Search (ARC Card)
- Presentation

Advancements

Familiarity with the Linux environment

Text editing (vi) Molecular visualization (VMD) Molecular modeling (GROMACS)

Ensembles

Elimination of bad-contacts (shell scripting)

Simulation techniques

Equations of motion

Periodic boundaries

Data Analysis (Xmgrace, OriginPro) Integration and differentiation Fitting

Literature Search (ARC Card)

Presentation

Normal Diffusion

Permeability

$$\frac{1}{P} = \int_{0}^{interface} R(z) dz$$

$$=\frac{1}{\int_{0}^{interface}\frac{\exp\left(\Delta G(z)/RT\right)}{D(z)}dz}$$

Stagnant water layer attenuation

$$\frac{1}{P} = \frac{2}{P_{UL}} + \frac{1}{P_M}$$
$$\frac{1}{P_1} = \frac{2}{P_{UL_1}} + \frac{1}{P_{M_1}}$$
$$\frac{1}{P_2} = \frac{2}{P_{UL_1}} + \frac{1}{P_{M_2}}$$
$$\frac{1}{P_3} = \frac{2}{P_{UL_2}} + \frac{1}{P_{M_1}}$$
$$\frac{1}{P_4} = \frac{2}{P_{UL_2}} + \frac{1}{P_{M_2}}$$

_ _ _ _ _ _

Acknowledgments

Lipid permeation Ryan Hamelin Alexander Steacy Reginald Sarpong Joshua Muzyk

Liquid Helium

Jussi Eloranta, CSUN

Nelly Bonifaci, G2ELab-Grenoble

- S. Fiedler, A. Violi, Biophys. J. 99, 144 (2010)
- N. Bonifaci, F. Aitken, V. Atrazhev, S. Fiedler, J. Eloranta, Phys. Rev. A 85, 042706 (2012)
- S. Fiedler, J. Eloranta, J. Low. Temp. Phys. 174, 269-283 (2014)
- N. Bonifaci, Z. Li, J. Eloranta, S. Fiedler, J. Phys. Chem. A 120, 9019 (2016)

