Annual Departmental Plan Report

Program Information

Program/Department: Computer Science / Computer Science Department Chair: Brady Chen Department Assessment Committee Contact: Brady Chen

Please be as detailed as possible in your responses. We will use this information to fulfill our NEASC requirements and this report will help with your next Program Review or aid with your external accreditation. This file is to be kept in the department and an electronic file is due to the Director of Assessment by May 31 each academic year.

Program Learning Outcomes (PLOs) (Educational Objectives)

I. List all PLOs and the timeline for assessment.

(Note: The PLOs listed here are the CS Student Outcomes from the ABET self-study document.)

PLO #	PLO – Stated in assessable terms.	Timing of assessment (annual, semester, bi-annual, etc.)	When was the last assessment of the PLO completed?
1.	Demonstrate proficiency in relevant aspects of mathematics and concepts from physics and electrical circuits.	Every two years	Spring 2017
2.	Demonstrate proficiency with logic, discrete mathematics, algorithms and data structures.	Every two years	Spring 2017
3.	Demonstrate the ability to design and implement digital logic circuits and apply this knowledge to the understanding of a computer's organization and architecture.	Every two years	Spring 2017
4.	Demonstrate the development of both hardware and software interfaces between computers and digital devices.	Every two years	Spring 2017

5.	Demonstrate proficiency with computer programming languages and	Every two years	Spring 2017
	different programming paradigms.		
6.	Demonstrate understanding of the principles underlying the design of	Every two years	Spring 2017
	operating systems and proficiency using operating systems.		
7.	Demonstrate proficiency in software design and development methods.	Every two years	Spring 2017
8.	Demonstrate the ability to communicate in both oral and written forms and	Every two years	Spring 2017
	to work in teams.		
9.	Demonstrate the ability to learn after leaving the university.	Every two years	Spring 2017
10.	Demonstrate understanding of the ethical, legal and social issues associated	Every two years	Spring 2017
	with computing.		

II. <u>PLO Assessment (Please report on the PLOs assessed and/or reviewed this year, programs should be assessing at least one each year.)</u>

Using the table below, list and briefly describe the **direct method(s)** used to collect information assessing whether students are learning the core sets of knowledge (K), skills (S) and attitudes (A) identified as essential.

PLO #	Assessment description (exam, observation, national standardized exam, oral presentation with rubric, etc.)	When assessment was administered in student program (internship, 4 th year, 1 st year, etc.)	To which students were assessments administered (all, only a sample, etc.)	What is the target set for the PLO? (criteria for success)	Reflection on the results: How was the "loop closed"?
1-10	We assess the PLOs through the assessment of eleven key courses. Table 1 shows the association between PLOs and the key courses.	See Table 2 for the assessment cycle	Due to small class sizes for CS classes all the students are assessed.	See the fifth column "Target %tile scoring better than 70%" in Table 3 for the target set for PLO.	See last column "Action Taken" in Table 3
				U	

Eleven key courses were used for assessment purposes. Instructors for the 11 key courses gather assessment data every other year according to the schedule shown in Table 2 below. This schedule provides a complete program assessment every two years. Thus, since fall of 2013 we have completed two assessment cycles. Cycle 1 is from fall 2013 through Spring 2015. Cycle 2 is from Fall 2015 through Spring 2017. Table 3 shows the assessment data for cycle 2. Assessment tools align with course objectives and the number of objectives varies from 5 to 9 depending on the course. Student performance related to each objective is assessed by various tools embedded within each key course. The tools used to assess student learning of any given course objective may consist of quizzes (Q), exams (E), tests (T), homework (H), assignments (A), final exam questions (F), projects (P), lab exercises (L), final presentations (FP) or a combination of these. Student grades on each tool associated with each objective for each of the key courses are used to compute a score for each objective. A percentile rank of students (generally 70% to 80%) scoring above a particular threshold score (generally 70%) is used to identify areas requiring improvement. It is important to note that our class sizes are often small (24 maximum; many classes have enrollments less than 18). Smaller classes may have difficulty meeting an 80 percentile

criteria for every course objective especially in classes below the 3000-level where students may still be unsure about continuing with the computer science major.

Assessments occur over a two year cycle. During this period 11 key courses contribute to the assessment. One of these courses is offered in the Mathematics Department. The key courses used for assessment are:

- CSC 1600 Introduction to Electronics
- CSC 1650 Digital Electronics
- CSC 1900 Discrete Math
- CSC 2560 Systems Programming
- CSC 2600 Computer Organization
- CSC 3100 Operating Systems
- CSC 3200 Programming Languages
- CSC 3600 Microprocessors
- CSC 3700 Algorithms and Data Structures
- CSC 4400 Software Engineering
- MATH 2600 Linear Algebra

In the current assessment cycle, the following course will be added to address the weakness in PLO #10 in the last ABET report.

• CSC 4102 Ethical Issues in Computer Science

Table 1. The key courses used for assessment

	Courses used to assess student outcomes											
CS Student Outcomes	C3100	C3200	C2560	C3700	C4400	C1600	C1650	C2600	C3600	C1900	C4002	M2600
1 - Proficiency in relevant math, physics and electronics concepts.						х						Х
2 - Proficiency in discrete math, algorithms and data structures.				Х						Х		
3 - Proficiency in logic circuits and computer architecture.							Х	Х				
4 - Hardware and software interfaces with digital devices.									Х			
5 - Computer programming and programming paradigms.		Х	Х	Х								
6 - Principles underlying the design of operating systems.	Х											
7 - Proficiency in software design and develoment methods.					Х							

8 - Oral and written communications and team work.	Х		Х	Х	Х			
9 - Lifelong learning			Х					
10 - Ethical, legal and social issues associated with computing.							Х	

Table 2. The schedule of course assessments

	20)13	20	14	20	2015		16	2017	7
CS Outcomes Assessed	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
1. Math, physics and electronics.		M2600		C1600		M2600		C1600		
2. DM, algorithms & data structures.			C3700		C1900		C3700		C1900	
3. Logic circuits and computer org.			C1650	C2600			C1650	C2600		
4. Hardware and software interfaces.				C2600	C3600			C2600	C3600	
5. Programming languages & paradigms.		C3200		C2560		C3200		C2560		
6. Operating systems.					C3100				C3100	
7. Software engineering.			C4400				C4400			
8. Communications skills and team work.			C4400				C4400			
9. Lifelong learning.			C4400				C4400			
10 - Ethical, legal and social issues associated with computing.										

These 11 courses cover all of CS program learning outcomes. Most items are assessed in more than one course as shown in the table below.

Table 3. Assessment Data Tables (Fall, 2015 to Spring, 2017)Data for all course objectives (last assessment cycle)

Fall 2015 - Spring 2017		How Meas	sured	Target %tile		
Performance Indicators (Course Objectives)	Term	Course	Embedded Tool(s)	scoring better than 70%	Actual %tile	Action taken
Solve systems of linear equations	Fall1	M2600	T1;F	80%	75%	
Finite dimensional vector spaces	Fall1	M2600	T1;F	80%	75%	
Perform linear transformations	Fall1	M2600	T2;	80%	79%	
Bases and linear independence	Fall1	M2600		80%		Was not assessed by the math teacher.
Eigenvalues and eigenvectors	Fall1	M2600	T2;F	80%	79%	
Functional, logical & procedural paradigms	Fall1	C3200	T1	80%	70%	
Programming paradigm strengths and weaknesses	Fall1	C3200	T2	80%	70%	
Implementation structures for the paradigms	Fall1	C3200	A1;T3;F	80%	90%	
Functional programming using Scheme	Fall1	C3200	A2,3;T4;F	80%	80%	
Logic programming using Prolog	Fall1	C3200	A4;F	80%	100%	
Sorting Algorithms	Sp1	C3700	P1;T1	80%	70%	Develop handouts with programming hints
Graph Algorithms	Sp1	C3700	P2;T2	80%	90%	
Cryptographic Algorithms	Sp1	C3700	P3;T3	80%	100%	

Fall 2015 - Spring 2017	17 How Measured %tile Actua					
Performance Indicators (Course Objectives)	Term	Course	Embedded Tool(s)	scoring better than 70%	Actual %tile	Action taken
Dynamic data structures	Sp1	C3700	P4;T4	80%	70%	Develop practice test
Complexity theory	Sp1	C3700	T5	80%	90%	
Design paradigms	Sp1	C3700	T5;F	80%	100%	
Digital representation of data	Sp1	C1650	F	70%	30%	Many students have mathematical difficulty (PI-1
Boolean algebra	Sp1	C1650	F	70%	50%	& 2). Combinational
Combinational circuit analysis	Sp1	C1650	F	70%	70%	implementation difficulty on exam is puzzling as it differs
Combinational circuit implementation	Sp1	C1650	F	70%	40%	from lab and sequential design results. This may be a
Sequential circuit analysis	Sp1	C1650	F	70%	70%	recency effect. Actions: Change assessment of PI-1,2
Sequential logic design	Sp1	C1650	F	70%	80%	and 4 to a different tool. Spend more time on Boolean
Program a CPLD	Sp1	C1650	F	70%		simplification. (10 students)
Plan and implement a logical design	Sp1	C1650	L4	70%	90%	
Professional and ethical responsibilities	Sp1	C4400	A1	80%	100%	
Software Engineering processes and CASE tools.	Sp1	C4400	P2	80%	100%	
Requirements Analysis and documentation.	Sp1	C4400	P1;FD	80%	84%	

Fall 2015 - Spring 2017		How Meas	sured	Target %tile	Actual	
Performance Indicators (Course Objectives)	Term	Course	Embedded Tool(s)	scoring better than 70%	Actual %tile	Action taken
Architecture design and documentation.	Sp1	C4400	FD	80%	78%	
Database design and documentation.	Sp1	C4400	P3	80%	100%	
User interface design and documentation.	Sp1	C4400	P4	80%	100%	
Object oriented analysis, design and documentation.	Sp1	C4400	A2;FD	80%	73%	
Implementing verification, validation and testing.	Sp1	C4400	FP;FD	80%	78%	
Working in groups to complete a software project.	Sp1	C4400	P4;FD;FP	80%	85%	
Voltage, current, power and energy	Fall2	C1600	F1-29	80%	53%	Many students had poor numerical skills and
DC circuit analysis	Fall2	C1600	F35- 39,47,48	80%	67%	struggled. This slowed progress on more advanced
Build and test electronic circuits	Fall2	C1600	Lab	80%	73%	topics. Took actions to emphasize numeracy in
Electrical signals	Fall2	C1600	F30-34	80%	87%	subsequent offerings.
RC circuit analysis	Fall2	C1600	F40-43	80%	40%	Developed a lab assignment
Operational Amplifier circuits	Fall2	C1600	F49-58	80%	27%	to cover arithmetic. (15 students)
Discrete semiconductor circuits	Fall2	C1600	F59-62	80%	27%	

Fall 2015 - Spring 2017		How Meas	sured	Target %tile		
Performance Indicators (Course Objectives)	Term	Course	Embedded Tool(s)	scoring better than 70%	Actual %tile	Action taken
Data representations / Digital logic design	Fall2	C2600		80%		Professor retired w/o leaving sufficient student data to
Register transfer language (RTL)	Fall2	C2600		80%		establish assessment of each course objective.
Hardwired controller design and implementation	Fall2	C2600		80%		
Microprogram-med controller design	Fall2	C2600		80%		
Instruction set architecture, processing, assembly and pipelining	Fall2	C2600		80%		
Memory hierarchy, cache techniques and virtual memory	Fall2	C2600		80%		
I/O methods, interrupts, raid techniques, data compression	Fall2	C2600		80%		
RISC versus CISC machines	Fall2	C2600		80%		
Structured programming with C	Fall2	C2560	A1;T1	80%	84%	
Dynamic arrays and linked lists	Fall2	C2560	A3;T2;F	80%	91%	
Trees and pointer arithmetic	Fall2	C2560	A2;T2;F	80%	82%	

Fall 2015 - Spring 2017		How Meas	sured	Target %tile		
Performance Indicators (Course Objectives)	Term	Course	Embedded Tool(s)	scoring better than 70%	Actual %tile	Action taken
Pass by value versus pass by reference	Fall2	C2560	A2;T3;F	80%	93%	
File manipulation and IO methods	Fall2	C2560	A4	80%	78%	Develop handout
Problem Analysis and Design	Fall2	C2560	A2-4;F	80%	90%	
UNIX systems and programming	Fall2	C2560	T4	80%	79%	Develop practice test
Boolean expressions and Truth tables	Sp2	C1900	T1;F	80%	91%	
Proof techniques	Sp2	C1900	T2;F	80%	87%	
Boolean techniques in digital electronics	Sp2	C1900	T3;F	80%	86%	
Basic Set theory	Sp2	C1900	T4;F	80%	93%	
Basic Number theory	Sp2	C1900	T5;F	80%	91%	
Basic counting principles	Sp2	C1900	T6;F	80%	100%	
Graphs and trees	Sp2	C1900	T7;F	80%	99%	
Basic Computational theory	Sp2	C1900	T8;F	80%	95%	
Machine Architecture	Sp2	C3600		80%		Professor retired w/o leaving
Assembly Language	Sp2	C3600		80%		sufficient student data to
CPU Hardware	Sp2	C3600		80%		establish assessment of each
Memory Interfacing	Sp2	C3600		80%		course objective.
I/O Interfacing	Sp2	C3600		80%		1
Interrupts	Sp2	C3600		80%		1
DMA	Sp2	C3600		80%		1

Fall 2015 - Spring 2017		How Meas	sured	Target %tile	Actual	
Performance Indicators (Course Objectives)	Term	Course	Embedded Tool(s)	scoring better than 70%	%tile	Action taken
Principles and components of an Operating System	Sp2	C3100	H0,1;T1	80%	73%	Use homework material in quizzes
Processes	Sp2	C3100	H2,3;T2;P1	80%	73%	Use homework material in quizzes
CPU scheduling, deadlock detection and deadlock avoidance.	Sp2	C3100	H2,3;T2;P1	80%	73%	Use homework material in quizzes
Memory management	Sp2	C3100	H4;T2	80%	80%	
File systems	Sp2	C3100	H5;F	80%	93%	
Operating system security issues.	Sp2	C3100		80%	NA	

III. Summary of Findings: Briefly summarize the results of the PLO assessments reported in Section II above combined with other relevant evidence gathered and show how these are being reviewed/discussed. How are you "closing the loop"?

Other than GPA, what data/ evidence is used to determine that graduates have achieved the stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)	Who interprets the evidence? What is the process? (e.g. annually by the curriculum committee)	What changes have been made as a result of using the data/evidence? (close the loop)
The performance indicators (course objectives) of the 11 key courses	Each instructor of the key courses presents and interprets the evidence in the	See the last column "Action Taken" in Table 3

are used to determine that graduates have achieved the stated outcomes and thus the PLOs.	curriculum meetings and the department curriculum committee discusses and makes recommendation on what changes/actions the instructor needs to be taken.	

Assessment Plan for Program/Department

I. Insert the program or department Assessment Plan

Since our last report from the ABET Computing Accreditation Commission in 2016, we have been following our assessment process and adapting a program-wide embedded assessment model. The assessment tools and targets are set by the individual instructors based on course objectives, course level, course complexity and previous assessment results. Each course outline listed in the "Course Syllabi" section in ABET self-study document contains a table showing how each course objective aligns with PLOs (aka program student outcomes in ABET self-study document). For assessing courses in our department, we use a percentile above a threshold grade. This measure tells us the proportion of students meeting the threshold criteria and gives an indication of how well the student population performs with respect to each course objective (currently 80% or 70% depending on course).

II. Explain any changes in the assessment plan including new or revised PLOs, new assessments that the program/department plans to implement and new targets or goals set for student success.

The PLOs are expected to be changed in our next ABET accreditation in 2019 due to the change of new ABET criteria.

III. If you do not have a plan, would you like help in developing one?

	Yes
--	-----

University Data

I. SSC Data

Indicate **at least one** Student Success Performance Measure that the department/program has identified for planned change or improvement.

Freshman retention, bottleneck courses, graduation rates, at risk student retention etc.

The most recent SSC data was in 2010. For the past years, we have found out that more incoming students are less prepared for CS and CIS majors due to the unreadiness of mathematics and general science knowledge. So, we revised many our courses including CSC1500 and CSC1550 courses several years ago. We have included Python programming language in CSC1500. Therefore more recent SSC data are expected.

In the meantime, the department has been focusing on the recruitment by creating new concentrations for the past years: game programming concentration for CS major, cybersecurity concentration for CIS. Low retention rates are always the problem for CS and CIS majors due to the extensive requirements for programming, mathematics, and hardware (for CS) courses.

Student Success Measure	Implemented Intervention	Update on Implemented Intervention
(data point from SSC)	implemented intervention	(i.e. change in target, satisfied with outcome, not
		satisfied, will continue or not)

a. What was the focus this year?

b. What will your focus be for the upcoming year?*

Student Success Measure (data point from SSC)	Rationale for selection	Planned or Implemented Intervention	Current score/ Target Score	This measure was selected because of last Program Review or Accreditation (yes/no)
Freshman retention	The majority of CS/CIS students switch their majors after they fail CSC1500 and math courses in their freshman year.	We have no planned or implemented intervention yet. We plan to discuss this in the forthcoming semester.	N/A	No

*Note: Programs may wish to monitor or review the same data point over multiple years.

II. Trend Data

Indicate **at least one** Department Performance Measure that the program/department identified for change or improvement. Number of graduates, number of majors, credit production, substitutions etc.

a. What was the focus this year?

Department Performance Measure	Implemented Intervention	Update on Implemented
(data point from Trend Data)		Intervention
		(i.e. change in target, satisfied with outcome, not satisfied, will continue or not)

b. What will be the focus next year?*

Department Performance Measure (data point from Trend Data)	Rationale for selection	Planned or Implemented Intervention	Current score/ Target Score	This measure was selected because of last Program Review or Accreditation (yes/no)

*Note: Programs may wish to monitor or review the same data point over multiple years.

Program Review Action Plan or External Accreditation Action Letter/Report

Annual Reflection/Follow-up on Action Plan from last Program Review or external accreditation (only complete the table that is appropriate for your program)

I. Programs that fall under Program Review:

- i. Date of most recent Review:
- ii. Insert the Action Plan table from your last Program Review and give any progress towards completing the tasks or achieving targets set forth in the plan.

Specific area where improvement is needed	Evidence to support the recommended change	Person(s) responsible for implementing the change	Timeline for implementation	Resources needed	Assessment Plan	Progress Made this Year
Program weakness: lack of coverage in professional, ethical, legal, security, and social issues and responsibilities.	Action 1: Correction in the self-study Action 2: Additional information not included in the self-study. Action 3: Creation of one credit hour course CSC4002 Ethical Issues in Computer Science.	Brady Chen, Nadimpalli Mahadev, Kevin Austin, CS department curriculum committee	October 2013 – October 2014	Need a faculty to teach the class	Assessment for CSC4002 in Spring 2015	Submit the planned changes to ABET.
Program Weakness: Faculty members have	Action 1: Re-organization of scheduling of graduate	CS department curriculum committee	October 2013 – October 2014	Hire new adjunct faculty to cover some	N/A	Submit the planned changes to ABET.

too much	courses. no		day and	
teaching load	faculty member		evening	
	needed to take		courses	
	on more than			
	one graduate			
	class each			
	semester in			
	addition to their			
	day load.			
	Action 2:			
	New hiring. We			
	hired Dr. Ricky			

See the following attached documents for details:

- 1. Response to the ABET Final Statement
- iii. If you do not have an action plan, would you like help in developing one based on your last program review and needs of the program?

Yes

II. Programs with external Accreditation:

- i. Accreditor:
- ii. Date of last review:
- iii. Date of next review and type of review:
- iv. List key performance indicators:

List key issues for continuing	Key performance indicators as	Update on fulfilling the action
accreditation identified in	required by agency or selected by	letter/report or on meeting the key
accreditation action letter or	program (licensure, board or bar	performance indicators.
report.	pass rates; employment rates,	
	etc.)(If required.)	

March 2018

Faculty is expected to be the main	N/A	N/A
issue. ABET believes that we have no		
enough faculty to support Computer		
Science, Computer Information		
Systems, and Master of Computer		
Science programs.		

UARC Peer Review of the Program Annual Report

Program: _____

Date of Review:

	Program Learning Outcomes (PLOs)					
Criterion	Highly Developed (3)	Developed (2)	Emerging (1)	Initial (0)	Score	
Program Learning	All or almost all PLOs	Most of the PLOs	PLOs written in	PLOs not		
Outcomes (PLOs)	clearly stated and	clearly stated and	general, broad or	provided.		
	measurable.	measurable.	abstract statements			
			OR are not			
			measurable.			
Expected Timing of	All or almost all PLOs have	Most PLOs have a	Very few PLOs	No timelines are		
Assessment	a timeline stated.	timeline stated.	have a stated	given or are To		
			timeline.	Be Determined		
				(TBD).		
Assessment Tool	Assessment tool(s) is/are	Assessment tool(s) are	Assessment tool(s)	Assessment		
Quality	strong: very good quality	acceptable: good	are a good start but	tool(s) are either		
	and appropriate.	quality and appropriate	could use some	not appropriate or		
			strengthening or	not discussed.		
			changes.			
PLO Assessment	More than one PLO	At least one PLO assed	At least one PLO	No assessments		
	assessed and information is	and information is	assessed,	completed during		
	complete in the chart.	complete in chart.	information is not	the academic year		
			complete in chart.	reported.		

Criteria for Success	The criteria for student	Most criteria for student	Criteria for student	Criteria for	
J	success of each PLO is	success of each PLO is	success discussed	student success	
	clearly stated and is	clearly stated and is	or touched upon but	not provided.	
	appropriate.	appropriate.	not clearly stated or	1	
			is not appropriate.		
Summary of Findings	Measures used in from PLO	Very limited use of data	Used evidence	No summary	
	assessment fully	from PLO assessment	other than PLO	utilizing	
	incorporated with additional	incorporated with	assessment to	assessment data is	
	evidence to formulate the	additional evidence to	formulate the	evident.	
	summary and analysis	formulate the summary	summary or		
	supports the summary.	and analysis somewhat	analysis of the data		
		supports summary.	doesn't seem to		
			support summary.		
	Assessme	nt Plan for Program/Dep	artment		
Criterion	Highly Developed (3)	Developed (2)	Emerging (1)	Initial (0)	Score
Department or	Assessment Plan provided.	Assessment Plan	Assessment Plan	No Assessment	
Program Assessment	Has clearly stated process	provided. Has	provided, the	Plan provided.	
Plan	with reasonable	somewhat clear process	process is not clear		
	expectations.	and/or somewhat	and/or the		
		reasonable	expectations are not		
		expectations.	reasonable.		
Activities and	Decision to change or not	Decision to change or	Decision to change	No changes are	
Adjustments	change the assessment plan	not change the	or not change the	discussed.	
to/Deviation from the	are clearly stated and	assessment plan are	assessment plan are		
Department/Program	decision(s) are appropriate	described in general	vague and lack		
Assessment Plan	based on the reported	terms and may be	clarity.		
	results.	appropriate based on			
		the reported results.			
		University Data			
Criterion	Highly Developed (3)	Developed (2)	Emerging (1)	Initial (0)	Score
SSC Data for	Intervention undertaken by	Intervention undertaken	Planned	No SSC data	
Current Review	program/department for at	by program/department	intervention by	analyzed and/or	
Period		for at least one SSC	program/	reported on.	

	least one SSC data point. Clearly documented results.	data point. Plan not fully implemented.	department for at least one SSC data point. No plan implemented.					
SSC Data for Upcoming Review Period	At least one component of the SSC data selected to assess, rationale provided, targets set and intervention seems to be appropriate based on information provided.	At least one component of the SSC selected to assessed, some of the rationale provided, targets set and intervention seems to be appropriate based on information provided.	SSC data discussed and some or part of the assessment, targets or interventions are emerging but not fully appropriate.	No SSC data analyzed and/or reported on.				
Trend Data for Current Review Period	Intervention undertaken by program/department for at least one Trend data point. Clearly documented results.	Intervention undertaken by program/department for at least one Trend data point. Plan not fully implemented.	Planned intervention by program/ department for at least one Trend data point. No plan implemented.	No Trend data analyzed and/or reported on.				
Trend Data for Upcoming Review Period	At least one component of the Trend data selected to assess, rationale provided, targets set and intervention seems to be appropriate based on information provided.	At least one component of the Trend selected to assessed, some of the rationale provided, targets set and intervention seems to be appropriate based on information provided.	Trend data discussed and some or part of the assessment, targets or interventions are emerging but not fully appropriate.	No Trend data analyzed and/or reported on.				
Action Plane or External Accreditation Action Letter/Report								
Criterion	Highly Developed (3)	Developed (2)	Emerging (1)	Initial (0)	Score			
Only for those under Program Review Annual Reflection on Program Review	Full Action Plan provided with definitive on-going progress clearly stated.	Full Action Plan provided with some discussion of on-going progress plans stated.	Full Action Plan provided with vague ideas regarding on-going	Action Plan is either not provided or there no progress or				

			progress plans stated.	plans stated for progress discussed.
Only for those under External Accreditation Annual Reflection on Report/Letter from accrediting body.	Key issues and performance standards provided with definitive on-going progress clearly stated.	Key issues and performance standards provided with some discussion of on-going progress stated.	Key issues and performance standards provided with vague ideas regarding on-going progress plans stated.	Key issues and/or performance standards are either not provided or there has been no progress or plans stated for progress.
Comments:				

NOTE: This rubric is NOT an evaluation of the program/department. It is simply a tool for UARC to use as an aid in reviewing and providing constructive feedback to each program.